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Design and Development of the Student and Teacher
Mathematical Assessments 

This technical report documents the design and 
development of the student and teacher mathematical 
content assessment instruments for the Scaling Up 
SimCalc Project. In this project, which is described in 
Technical Reports 01 and 02 (Roschelle et al., 2007a; 
Roschelle et al., 2007b) and other publications (e.g., 
Roschelle et al., in press), we conducted three large-
scale studies to address the broad research question, 
Can a wide variety of teachers use an integration 
of technology, curriculum, and professional 
development to increase student learning of complex 
and conceptually difficult mathematics? The studies 
examined the SimCalc approach, which uses 
highly interactive software to help students learn 
the central middle school mathematical concepts 
of rate, proportionality, and linear function. The 
studies took place in Texas during the 2005–06 and  
2006–07 school years.

The Assessments and Their Purposes
Two SimCalc studies addressed seventh-grade 
students, teachers, mathematical content, and 
curriculum, and the third study was on eighth-
grade students, teachers, mathematical content, and 
curriculum. We developed 3-week curriculum units 
for each grade level using the SimCalc approach to 
replace teachers’ usual mode of instruction. Across 
the three studies, four assessments were developed. 
For each grade-level, we developed (1) an assessment 
for students of the content of the unit and (2) an 
assessment for teachers of the mathematical 
knowledge necessary to teach the unit.

The student assessments, administered pre-
replacement unit and post-replacement unit, were 
the main outcome measure in each of the studies. 

We found that standardized tests (such as the TAKS 
[Texas Assessment of Knowledge and Skills]) did 
not capture the conceptual depth students could 
reach using the SimCalc technology and curricula; 
therefore, using such tests for outcome measures 
would cause us to overlook potentially important 
effects of the intervention. Thus, the research team 
decided to build its own assessments. Because 
student achievement was the primary dependent 
measure for all the studies, we directed attention 
and resources to developing assessments that would 
meet rigorous standards for reliability and validity 
(American Educational Research Association, 
American Psychological Association, & National 
Council on Measurement in Education, 1999).

The teacher assessments, administered at the 
study baseline and other time points, were used to 
examine whether teachers learned mathematical 
content through participation in this project and to 
clarify the role of teacher mathematical knowledge 
in teaching and learning with these technology-
enhanced units (for detailed analyses, see Shechtman, 
Roschelle, Haertel, & Knudsen, in press). Drawing 
on the work of Ball, Hill, and other researchers in 
mathematics teaching and learning (Ball, 1990; Ball, 
Hill, & Bass, 2005; Hill, Rowan, & Ball, 2005; Ma, 
1999; Shulman, 1986), the team used the construct 
of mathematical knowledge for teaching (MKT). 
Because prior research had not assessed MKT at the 
middle school level, the research team also needed 
to develop these assessments. Given that findings 
about teacher knowledge were important but not of 
primary concern, fewer resources were put into the 
development and validation of this instrument.
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Overview of Assessment 
Development Processes
For each grade level, the curriculum, student 
assessment, and teacher assessment were developed 
in tandem to ensure they were in alignment with one 
another. The assessment development process for 
the seventh-grade studies drew on a pilot study that 
we had conducted before the large-scale research 
of the Scaling Up SimCalc Project. As described 
elsewhere (Tatar et al., 2008), prototype versions 
of the curriculum, student assessment, and teacher 
assessment were used in this experiment. Some items 
were reused with revisions, but the assessments were 
almost completely redesigned in the fully scaled up 
work.

We followed best practices in assessment 
development (e.g., American Educational Research 
Association, American Psychological Association, 
& National Council on Measurement in Education, 
1999) and in the conceptualization of the constructs 
being assessed. The corresponding test structure and 
content were grounded in the tenets of Evidence 
Centered Design (ECD) (Almond, Steinberg, & 
Mislevy, 2002; Mislevy, Almond, & Lukas, 2003; 
Mislevy & Haertel, 2006; Mislevy, Steinberg, & 
Almond, 2002). ECD emphasizes the evidentiary 

base for specifying coherent, logical relationships 
among (1) the complex of knowledge, skills, and 
abilities that are constituents of the construct to 
be measured; (2) the observations, behaviors, or 
performances that should reveal the target construct; 
(3) the tasks or situations that should elicit those 
behaviors or performances; and (4) the rational 
development of construct-based scoring criteria 
and rubrics (Messick, 1994). This evidentiary base 
supports both the construct and content validity of 
the assessment.

Figure 1 illustrates the progression of ECD processes 
followed to build an assessment with a strong 
evidentiary base. The progression begins with 
domain analyses and domain modeling activities and 
ends with assessment assembly and documentation. 

In the initial ECD processes, domain analysis and 
domain modeling, the assessment’s conceptual 
foundation is established.  In domain analysis, experts 
in the content domain articulate the important 
core knowledge, skills, and abilities to be assessed. 
During domain modeling, the experts elaborate the 
structure and content of the assessment tasks to be 
developed. These processes provide input into the 
development of a test specification that served as the 
blueprint for the overall assessment.
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Figure 1. ECD processes used to design, develop, validate, and document the final version of each assessment.
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In the second process, conceptual assessment 
framework, the types of assessment items and their 
properties are specified, including technical issues 
associated with the scoring model and evaluative 
rules to be used in scoring the items. The third 
process, assessment task development, is an iterative 
cycle of developing a pool of potential assessment 
items, refining them, collecting and analyzing validity 
data, using the data to refine the items, and perhaps 
developing more items. Finally, in the fourth process, 
assessment assembly and documentation, the validity 
data are used as a guide to assemble the items to meet 
the test specifications in the assessment blueprint as 
closely as possible, and the technical documentation 
describing the assessment is prepared.

In the following sections, we detail the development 
of each of the assessments across each of the processes 
outlined in Figure 1.

Process 1:  
Domain Analysis and Modeling
The goal of the domain analysis is to establish and 
articulate important core knowledge, skills, and 
abilities (KSAs) to be assessed. For each grade level, 
we performed two major domain analyses. In the first, 
we developed a conceptual framework that specified 
the mathematical content that we would  focus on in 
the curriculum and student assessment. Building on 
this, we developed a conceptual framework for the 
mathematical knowledge that would be necessary to 
teach this content.

Here we describe the two sets of domain analyses and 
the test specifications that were derived from them.

Domain Analysis for the Curriculum and 
Student Assessment

Because this domain analysis was to serve as the 
foundation for both our interventions and primary 
outcome measures, we considered several perspectives 
in specifying the focal mathematical content for each 
grade level. One perspective was of the mathematical 

concepts that students could potentially learn from 
the SimCalc approach. In this approach, which is 
described in detail elsewhere (e.g., Roschelle et al., in 
press), both software and paper curriculum booklets 
are used. The software anchors students’ efforts to 
make sense of conceptually rich mathematics in their 
experiences with computer animations of motion. 
The paper-and-pencil curricula allow students to 
connect their mathematical understanding across 
familiar representations (narrative stories and 
animations of motion) with key mathematical 
representations (algebraic expressions, tables, 
graphs). Another perspective was from the Texas 
seventh- and eighth-grade standards (Texas Essential 
Knowledge and Skills [TEKS]) and our analysis of 
the content as actually covered in current Texas 
mathematics instruction. Our  third perspective was 
to consider the recommendations of the national 
standards and focal points (i.e., the National Council 
of Teachers of Mathematics [NCTM]). A fourth 
perspective was based on the research knowledge 
about student cognition in the learning sciences and 
best pedagogical practices for supporting student 
learning of conceptually difficult mathematics. 
Finally, we considered the emphasis of the funder 
of the research, the National Science Foundation 
(NSF), on “complex and conceptually difficult 
mathematics.”

We started by identifying the broad concepts at the 
intersection of these perspectives. This led to the 
identification of proportionality and linear function 
as the target mathematics. Among middle school 
mathematical concepts, proportionality ranks high in 
importance, centrality, and difficulty (Hiebert & Behr, 
1988; National Council of Teachers of Mathematics, 
2000; Post, Cramer, Behr, Lesh, & Harel, 1993). 
For example, the NCTM describes proportionality 
and related concepts as “focal points” for learning 
in seventh and eighth grade (National Council of 
Teachers of Mathematics, 2007). Mathematically, 
proportionality is closely related to the concepts of 
rate, linearity, slope, and covariation. In addition, 
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proportionality offers an opportunity to introduce 
students to the concept of a function through the 
constant of proportionality, k, that relates x and f(x) 
in the functional equations of the form f(x) = kx. A 
sufficiently deep understanding of function as it relates 
to rate, linearity, slope, and covariation is central to 
progress in algebra and calculus. These concepts are 
also central to students’ science learning. Without 
understanding rate and proportionality, students 
cannot master important topics and representations 
in high school science such as laws (e.g., F = ma, F 

= -kx), graphs (e.g., of linear and piecewise linear 
functions), and tables (e.g., interpolating between 
explicit values relating the width and length of maple 
leaves). Mathematics education research has identified 
persistent difficulties in mastering these concepts (i.e., 
misconceptions) and has theorized that proportionality 
is at the heart of the conceptually challenging shift 

from additive to multiplicative reasoning (Harel & 
Confrey, 1994; Leinhardt, Zaslavsky, & Stein, 1990; 
Vergnaud, 1988). 

In conjunction with our project’s mathematics 
advisory board, which included three mathematicians 
and three mathematics educators, we developed a 
mathematics framework for the seventh and then 
for the eighth-grade intervention that abstracted the 
mathematical concepts to be used in the curricula 
and assessments. These are summarized in Table 1, 
and the more detailed frameworks are in Appendix 
A. Appendix B shows the subset of TEKS skills and 
knowledge that were targeted specifically in each 
grade. In Table 1, we use the symbol M1 to refer to 
the mathematics that is measured on the tests used 
for accountability in Texas. We use the symbol M2 to 
refer to mathematics that goes beyond what is tested 
in Texas.

Framework M1 Component

Foundational concepts typically covered 
in the grade-level standards, curricula, 
and assessments

M2 Component

Building on the foundations of M1, 
essentials of concepts of mathematics of 
change and variation found in algebra, 
calculus, and the sciences

Rate and 
proportionality 
for the 
seventh-grade 
studies

•  Simple a/b = c/d or y = kx problems in 
which all but one of the values are pro-
vided and the last must be calculated

•  Basic graph and table reading without 
interpretation (e.g., given a particular 
value, finding the corresponding value 
in a graph or table of a relationship)

•  Reasoning about a representation (e.g., 
graph, table, or y = kx formula) in which 
a multiplicative constant k represents a 
constant rate, slope, speed, or scaling 
factor across three or more pairs of 
values that are given or implied

•  Reasoning across two or more 
representations

Linear function 
for the eighth-
grade study

•  Categorizing functions as linear/
nonlinear and proportional/
nonproportional

•  Within one representation of one linear 
function (formula, table, graph, narrative), 
finding an input or output value

•  Translating one linear function from one 
representation to another

•   Interpreting two or more functions that 
represent change over time, including 
linear functions or segments of piecewise 
linear functions

•  Finding the average rate over a single 
multirate piecewise linear function

Table 1. Mathematical conceptual frameworks for the seventh-grade and eighth-grade curricula and assessments. 
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Proportionality can be taught both as a  

formula                  and a function f(x) = kx, where k 

is the constant of proportionality. The analysis of the 
latter function across algebraic, graphical, tabular, 
animated, and verbal forms can be the starting point 
for the learning progression that leads to calculus. In 
particular, emphasizing the conceptual links among 
different expressions of “rate” brings coherence 
to instruction that promotes an ever-deepening 
understanding of the mathematics of change and 
variation across many years of material. The 
particular opportunity in seventh-grade instruction 
is to connect the multiplicative constant k in the 
algebraic expression y = kx, the slope of a graphed 
line, the constant ratio of differences in a table 
comparing y and x values, and the experience of 
rate as “speed’ in a motion. In eighth grade these 
connections expand to the more complex model 
implied by the linear function y = mx + b.

The NCTM has a perspective that is consistent 
with, but not identical to, the Texas and SimCalc 
perspectives. We initially geared our content toward 
the NCTM’s central document, the Principles 
and Standards (National Council of Teachers of 
Mathematics, 2000). During our research, the NCTM 
added a recommended set of three “focal points” to 
be emphasized at each grade level (National Council 
of Teachers of Mathematics, 2007). Our mathematics 
aligned with one of the major focal points in each of 
seventh and eighth grade. The seventh-grade focal 
point for algebra emphasizes proportionality. The 
eighth-grade focal point is described as follows:

Students use linear functions, linear equations, 
and systems of linear equations to represent, 
analyze, and solve a variety of problems. They 
recognize a proportion (y/x = k, or y = kx) as 
a special case of a linear equation of the form 
y = mx + b, understanding that the constant 
of proportionality (k) is the slope and the 
resulting graph is a line through the origin. 
Students understand that the slope (m) of a line 

is a constant rate of change, so if the input, or 
x-coordinate, changes by a specific amount, 
a, the output, or y-coordinate, changes by the 
amount ma. Students translate among verbal, 
tabular, graphical, and algebraic representations 
of functions (recognizing that tabular and 
graphical representations are usually only partial 
representations), and they describe how such 
aspects of a function as slope and y-intercept 
appear in different representations. Students 
solve systems of two linear equations in two 
variables and relate the systems to pairs of lines 
that intersect, are parallel, or are the same line, in 
the plane. Students use linear equations, systems 
of linear equations, linear functions, and their 
understanding of the slope of a line to analyze 
situations and solve problems. (National Council 
of Teachers of Mathematics, 2007, p. 20)

As recommended, the SimCalc content addresses 
linear and proportional functions, emphasizing that 
the slope of a line represents a constant rate of change 
and engaging students in translating among verbal, 
tabular, graphical, and algebraic representations. 
Although SimCalc can include systems of linear 
equations, our research did not address this concept 
because it is not considered appropriate for eighth-
grade mathematics in Texas. (This illustrates one of 
the conflicts among perspectives.) 

Finally, we continued to attempt to be responsive 
to the NSF’s notion of “complex and conceptually 
difficult” mathematics. Overall, we found this 
notion ill defined and difficult to apply. The phrase 
appeared to be attributed to Trends in International 
Mathematics and Science Study research in the NSF 
request for proposals to which we responded, but 
we were unable to find a source for it. We found the 
phrase ill defined because students can experience 
mathematics as difficult or complex for many 
reasons. Classic sources of difficulty and complexity 
are multistep problem solving, imprecisely framed 
questions, awkward quantities, and overly formal or 
abstract presentations. Further, conceptual difficulties 

a
b

c
d

-( )
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may vary with the approach taken: A historical 
example is that it is easier to add with Roman than 
Arabic numerals (no place value system is needed) but 
harder to multiply with Roman than Arabic numerals 
(because of the lack of place value system).

In sum, Table 1 represents the resolution of 
the differences in perspectives and provides the 
conceptual framework for the assessments.

Domain Analysis for the Mathematics 
Necessary to Teach the Curricula

Because the purposes of the teacher mathematics 
assessments were to examine teacher mathematics 
learning and the role of teacher knowledge in the 
implementation of the curricula, in this domain 
analysis we established a framework for assessing 

not only teachers’ knowledge of the KSAs in Table 
1, but also the specialized mathematical knowledge 
necessary to support students’ learning of these 
KSAs. Drawing on the work of Ball, Hill, and other 
researchers in mathematics teaching and learning 
(Ball, 1990; Ball, Hill, & Bass, 2005; Hill, Rowan, 
& Ball, 2005; Ma, 1999; Shulman, 1986), the team 
used the construct of mathematical knowledge 

for teaching (MKT) and distilled seven types of 
knowledge necessary to support students’ formative 
understandings of the concepts in the units (Table 2).

The domain for the MKT assessment therefore 
encompassed both general knowledge of the 
concepts in Table 1 and the specialized knowledge 
necessary to teach these concepts as structured by 
the categories in Table 2.

Type of Knowledge Example

Interpreting unconventional forms or 
representations that students are likely to make 
as they construct their understanding (such 
representations may be mathematically correct but 
not conventional)

Interpret the slope of a line on a  position graph 
with time on the y-axis and distance on the x-axis

Generating, choosing, and evaluating problems and 
examples that can illustrate key curricular ideas

Choose a word problem that illustrates proportional 
reasoning

Differentiating between colloquial and 
mathematical uses of language and evaluating 
student statements for their mathematical precision

Know that “The slope of the line is 0” is more 
mathematically precise than “the line is flat.”

Linking precise aspects of representations 
and translating a function between multiple 
representations (i.e., story, graph, table, algebra)

Know that the m in y = mx + b corresponds to the 
slope of graphed line

Understanding implications of models and 
representations

Understand that rate and time are inversely 
proportional, even though the curriculum focuses 
on the linear relationship between time and 
distance in d = rt

Evaluating the validity of mathematical conjectures Evaluate under what conditions this student’s 
statement is true: “The shorter the line the faster 
they run.”

Connections to important advanced mathematics 
beyond the unit

Make connections between changes in position 
and velocity

Table 2. Core types of MKT necessary for teachers to support students’ formative understanding of the 
concepts in the seventh- and eighth-grade units.
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Test Specifications

As part of the domain analysis process, we developed 
test specifications (Table 3). All assessments were 
paper and pencil. The student assessments were 
designed to be administered by teachers in their 
own classrooms within one class period (about 45 
minutes). The teacher assessments were designed to be 
administered by workshop leaders or self-administered 
by teachers at home within about 1.5 hours.

Process 2:  
Conceptual Assessment Framework
The goals of this stage were to establish the types of 
assessment items and their properties. For the student 
assessments, we used existing items from released 
standardized tests, previously validated instruments, 
the research literature, the SimCalc pilot, and the 
SimCalc curriculum to populate the blueprint test 
specifications as outlined in Table 3.

For the MKT assessments outlined in our test 
specifications, few items of this type existed, so 
we had to generate our own pool of items. A 
common approach in many large-scale assessment 
development processes is to create item templates 

that form the structure for assessment items and 
can be filled in with variable content. Drawing on 
previous examples of MKT assessments (e.g., Ball, 
1990; Ball, Hill, & Bass, 2005; Hill, Rowan, & Ball, 
2005), we created a set of item templates that could 
be filled in with new MKT content. Each template 
could be used to produce a set of multiple-choice 
questions situated within the context of mathematics 
classrooms and teaching. Each template addressed 
one of the key facets of MKT presented in Table 2 
and had three parts. The first part was a particular 
teaching situation that evoked one of the facets of 
knowledge in Table 2, such as a teacher presenting 
a problem to the class, grading papers, examining 
errors students made on a particular problem, or 

Table 3. Test specifications.

Dimension Student Assessments MKT Assessments

Mathematical 
content

•  Items aligned with each of 
the focal KSAs as outlined in 
Appendix A (such that they create 
reliable M1 and M2 subscales)

•  Alignment with Texas state 
standards (TEKS), as outlined in 
Appendix B

•  Items aligned with each of the focal KSAs 
in Table 1

•  Items aligned with categories in Table 2 
that support the understanding of KSAs in 
Table 1

•  In seventh-grade studies only, to assess 
knowledge of mathematics beyond the 
unit that was covered in the professional 
development, knowledge of connections 
between representations of changes in 
position and velocity

Task types •  Varied across contexts (i.e., 
motion, money)

•  Diversity of task types (about one-
third each of multiple choice, short 
response, construction of multiple 
mathematical representations)

•  Multiple choice, following the model of prior 
MKT work in the field (e.g., Hill, Rowan, & 
Ball, 2005)

•  In the seventh-grade studies only, velocity 
items assessed through multiple choice 
and constructed response
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attending a professional development workshop. The 
second part was a mathematical question about this 
situation, and the third part was a list of distracters, 
including the correct answer.

Process 3:  
Assessment Task Development
Described here are the development and validation 
processes. Appendix C provides examples of 
assessment items.

Development of the Item Pool

We collected candidate items for the student 
assessments from a variety of sources, guided by the 
assessment blueprint.

•  Released standardized tests (seventh-grade 
TAKS, eighth-grade Trends in International 
Mathematics and Science Study [TIMSS], eighth-
grade National Assessment of Educational 
Progress [NAEP], California High School Exit 
Examination [CHSEE], the eighth- and tenth-
grade Massachusetts Comprehensive Assessment 
System [MCAS])

•  Items used in early SimCalc design research and 
the SimCalc pilot

•  The rate and proportionality literature (e.g., 
Kaput & West, 1994; Lamon, 1994; Lobato & 
Thanheiser, 2002)

•  The math of change and variation literature (e.g., 
Carlson, Jacobs, Coe, Larsen, & Hsu, 2002)

•  Items adapted directly from the SimCalc unit

For the seventh-grade and eighth-grade assessments, 
this produced initial pools of 59 and 58 items, 
respectively.

To develop our initial pool of items for the MKT 
assessments, we held a 1.5-day item camp, a 
workshop in which individuals with various types of 
expertise came together to collaboratively generate 

new assessment items. In addition to the SimCalc 
curriculum designer and core research team, 
members of the item camps included an experienced 
middle school math teacher, math education 
researchers, mathematicians, and assessment 
experts. Participants were provided with the test 
specifications, item templates, an outline of the core 
mathematical KSAs (Tables 1 and 2), the SimCalc 
curriculum, and various resources such as the Texas 
middle school mathematics standards, assessments, 
and textbooks. They were then asked to use these 
resources to generate items that addressed all the 
important mathematics teachers should know to 
support student learning during the unit. In addition, 
in the seventh-grade assessment, to test mathematics 
beyond the unit we incorporated into the pool 
items from previous SimCalc research that assessed 
knowledge of connections between representations 
of changes in position and velocity.

For the seventh-grade and eighth-grade MKT 
assessments, this generated initial pools of 45 and 57 
items, respectively.

Collection and Analysis of Validity Data

In item validation, evidence is accumulated to provide 
a scientifically sound argument that the assessment 
items measure the constructs they are intended to 
measure to support the intended interpretation of test 
scores (American Educational Research Association, 
American Psychological Association, & National 
Council on Measurement in Education, 1999). Table 
4 outlines the steps of assessment validation that we 
followed for each assessment. Here we present data 
collected with each step.

Formative and Summative Expert  
Panel Reviews

For each assessment, we conducted both a formative 
and summative review. Each formative review 
occurred early in the development process after 
the initial pool of items had been developed. Each 
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summative review was the final step in the assessment 
development process. In each review, experts were 
provided with the assessment items and asked to 
make specific ratings and/or recommendations for 
each item.

The two formative panels for the seventh-grade and 
eighth-grade student assessments took place in person 
in Austin, Texas, in a 1-day workshop. There were two 
subpanels. For both types of panels, training consisted 
of an orientation to (1) the SimCalc project, (2) the 
mathematical content, and (3) the assessment items. 
The first subpanel was composed of mathematics 
education researchers and assessment experts (four 
for the seventh-grade assessment and three for the 
eighth-grade assessment). This subpanel made two 

types of categorical concurrence ratings for each 
item in the item pool: (1) alignment with the SimCalc 
conceptual framework through classification of each 
item with respect to KSAs outlined in Appendix 
A and (2) alignment with a focused subset of the 
TEKS, as shown in Appendix B. They were also 
asked to make recommendations for improving the 
items. The second subpanel for each assessment was 
composed of two local curriculum and instruction 
experts (e.g., math supervisor, textbook contributor). 
This subpanel rated items relative to three aspects 
of grade-level appropriateness: (1) reading load, (2) 
computation load, and (3) graphics load. They rated 
each item on a 3-point scale (appropriate, somewhat 

inappropriate, inappropriate) for each aspect of 

Method Validity Issue

Formative and summative 
expert panel reviews (alignment 
and ratings of items)

• Alignment with the intended content (Table 1)
• Alignment with the TEKS
• Grade-level appropriateness

Cognitive think-alouds • Does the task make sense to the respondents?
• Does the task elicit the cognitive processes intended?
• Can the task be completed in the available time?
• Can respondents use the diagrams, charts, tables as intended?
• Is the language clear?

Field-testing for psychometric 
information

Individual Items
•  Range of responses from students representing different levels of 

mathematical understanding
•  Amount of variation in responses sufficient to support statistical 

analysis
• Distribution of responses by distractor
• Presence of ceiling or floor effects
•  Discrimination among students at different levels of the construct 

being assessed

Overall Form and Subscale Analyses
• Internal reliability
• Biases among subgroups

Table 4. Methods used for assessment validation. (Items were iteratively refined with each step.)
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grade-level appropriateness. They were also asked 
to recommend modifications that would make the 
items more grade-level appropriate.

For each assessment, data were compiled at the 
item level and used to classify and refine the items. 
Items that did not have a majority of agreement 
on categorical concurrence classification, were not 
aligned with the target TEKS, and/or were rated as 
inappropriate for the grade level were eliminated 
from the item pool or modified to be suitable. The 
categorical concurrence data were also used to 
classify items to determine coverage in our field test 
instrument across the KSAs in Appendix A.

The summative panels for the student assessments 
took place after field-testing (see below) and were 
conducted by mail. The experts were members of our 
advisory board who had worked with us to develop 
the mathematical conceptual frameworks. They 
were provided with the fully refined items and the 
categorical concurrence classifications determined 
during the formative review. For each item, they 
checked off whether they agreed or disagreed with 
the classification. If they did not agree with it, they 
were to explain their decision. The summative 
panel members agreed with each other and with the 
prior ratings in almost all cases. This summative 
classification was used to determine content coverage 
in the final instruments.

Because findings about teacher knowledge were 
lower stakes in this project than those about student 
knowledge, to conserve resources, we conducted 
only a formative review of the MKT assessments 
and had senior members of the SimCalc research 
team serve as the experts. For each assessment, two 
experts aligned each item in the initial item pool 
with the frameworks in Appendix A and Table 2 
and recommended refinements to enhance clarity 
and alignment. These data were used to determine 
coverage of the content in these frameworks.

Cognitive Think-Alouds

The second validity study was conducting using a 
cognitive think-aloud methodology. Cognitive think-
alouds were conducted on all the items remaining 
in the item pool after the formative review. In a 
cognitive think-aloud, the test-taker speaks out 
loud his or her thinking as he or she works through 
assessment items. An interviewer records this 
monologue and asks a minimal number of probing 
questions as necessary but does not interfere with 
the test-taker’s engagement with the mathematics. 
For each student assessment, we conducted think-
aloud interviews with eight middle school students 
who each did a subset of the items. The students 
represented the full range of achievement levels, and 
any given item was done by 2-3 high-, 2-3 medium-, 
and 2-3 low-achieving students. The think-alouds 
were conducted by a middle school mathematics 
teacher trained in the think-aloud protocol. These 
interviews were audiotaped for the seventh-grade 
assessment and videotaped for the eighth-grade 
assessment and analyzed by a member of the research 
team. For each MKT assessment, we conducted 
think-aloud interviews with three teachers known to 
represent a range of MKT levels. These interviews 
were conducted and analyzed by a member of the 
research team.

For each participant, the interviewer documented 
the time needed for completion, the mathematical 
strategies the test-taker used, the mathematical 
mistakes made, difficulties in comprehending the 
problem because of ambiguous or unclear language, 
unfamiliar terminology, or confusing calculations 
(when applicable). This information was then 
summarized for each item and used to eliminate and/
or modify items in the pool. Items were eliminated 
if they were too easy or too difficult for the test-
takers or if the test-takers could use a construct-
irrelevant strategy to solve them (e.g., counting to 
solve a problem intended to measure proportional 
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reasoning). Item instructions, text, and graphics 
were modified as necessary to increase clarity and 
refine mathematical logic.

Field-Testing for Psychometric Information

The third method was field-testing the assessments 
with a large sample. For each assessment, we used 
the categorical concurrence ratings of the remaining 
refined items in the item pool to assemble a field 
test instrument that met the requirements of the test 
specifications in Table 3.

We field-tested each student assessment with a 
representative sample of middle school students (230 
for the seventh-grade assessment and 309 for the 
eighth-grade assessment). For each MKT assessment, 
we conducted field testing through a mass mailing to 
a national random sample of 1,000 middle school 
mathematics teachers (the names and addresses were 
purchased from an educational data service). The 
response rates were 17.9% and 12.8%, yielding 179 
and 128 teachers for the seventh- and eighth-grade 
assessments, respectively. On key demographic 
variables (gender, age, teaching experience, ethnicity, 
region type, and first language), the samples were 
representative of the population of teachers we 
expected to participate in the Scaling Up SimCalc 

Project; suburban regions, relative to rural and 
urban regions, were slightly oversampled.

We used classical test theory (CTT) and item response 
theory (IRT) with the field test data to examine three 
critical evidentiary concerns. First, we examined 
individual items for the range of possible responses, 
statistical variation, ceiling and floor effects, and the 
capacity of the items to discriminate among test-
takers at different ability levels (using IRT parameters 
for a two-parameter logistic model). Second, we 
examined the internal consistency of the relationship 
of total and subscale scores to individual items to 
the test (i.e., scale reliability). Third, we examined 
possible biases among population subgroups.

We used these data to refine the instrument for a final 
version. Items with low discrimination parameters 
(i.e., items that could not discriminate among 
individuals of differing ability) or ceiling/floor 
effects were eliminated or modified. Items were kept 
that were likely to contribute the most information 
about the test-taker’s ability and to maintain 
representative coverage of the assessment conceptual 
framework. Using the IRT data, we calibrated the 
MKT assessments to be relatively difficult so that the 
average score would be about 50%.

Whole Form M1 Subscale M2 Subscale

Assessment Items
Internal 

Reliability
Pre-test 

mean (SD) Items
Internal 

Reliability
Pre-test 

mean (SD) Items
Internal 

Reliability
Pre-test 

mean (SD)

Seventh grade

Student 30 0.86 12.9 (5.7) 11 0.73 7.3 (2.6) 19 0.82 2.6 (3.7)

MKT 24 0.80 10.0 (4.5)

Eighth grade

Student 36 0.91 12.1 (7.4) 18 0.79 7.2 (3.7) 18 0.87 4.9 (4.3)

MKT 28 0.80 16.3 (5.0)

Table 5. Summary of basic test statistics for each assessment. (MKT subscale statistics not reported because 
scores always reported in aggregate.)
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Process 4:  
Assessment Assembly and 
Documentation
As summarized in Table 4, the validation methods 
were used to both iteratively refine the items and 
forms, as well as provide evidence for validity.

Form and item statistics are documented here using 
data from the research participants. The sample 
characteristics can be found in Appendix D. Table 
5 summarizes the form statistics, and detailed item 
data are in Appendices E–H.

Conclusion
These processes led to the development of the four 
assessments used in the Scaling Up SimCalc Project. 
The student assessments revealed statistically 
significant main effects, with student-level effect 
sizes of .63 and .56 in the Seventh-Grade and 
Eighth-Grade studies respectively (Roschelle et al., in 
press). We found mixed support for the relationship 
between student learning and MKT, as there was a 
significant relationship between M2 learning gains 
and teacher MKT in the Seventh-Grade Study  
(β = .13, p<.01) but not in the Eighth-Grade study 
(β = -.01, n.s.) (Shechtman et al., in press).
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Appendix A 

Detailed Conceptual Frameworks for the Mathematical Content of the 
Seventh- and Eighth-Grade Interventions and Student Assessments

Table A1. Seventh-Grade Core Mathematical Constructs. Proportionality as Preparation for Algebra and 
Calculus.

M1 - Conceptually Simple Proportionality

Solving for a specific value

A. Solving problems using 
the formula a/b = c/d

Simple a/b = c/d problem in which three of the values are provided and 
the fourth must be calculated or the proportion must be recognized

B. Solving unit rate problems 
with y = kx or d = rt

Simple y = kx or d = rt problem in which two values are provided and a 
third must be calculated (even if it is based on own prior work)

Reading a specific value

C. Basic graph reading of 
linear relationships

•  Reading values at specific points without interpreting their meaning 
as a rate

•  Using the labels of axes to determine the meaning of a given pair of 
x, y coordinates

•  Sketching or plotting a given pair of x, y coordinates

D. Basic table reading of 
linear relationships

Given a particular value, find the corresponding value in a table of a 
relationship

M2 - Complex and Conceptually Difficult

E. Solving problems that 
invoke the function y = kx

Reasoning about a representation (e.g., graph, table or y = kx formula) 
in which a multiplicative constant k represents a constant rate, slope, 
speed, or scaling factor across many pairs of values (three or more 
pairs) that are given or implied

Within representations

F. Algebraic expression Interpreting the behavior of a proportional function represented by an 
algebraic expression or constructing an algebraic representation of a 
proportional function

G. Table Filling in cells of a table with many (three or more pairs) values that are 
related by the same constant of proportionality

H. Graph Interpreting or constructing the graph of a proportional or linear function

I. Graph with a piecewise 
linear function

Interpreting or constructing a piecewise linear graph (e.g., releative to 
narrative description of change over time)

Making connection(s) or comparison(s)

J. Across two or more 
functions

Interpreting, comparing, or constructing two or more linear or 
piecewise linear functions

K. Across multiple 
representations

Reasoning about the same proportional relationship across at least 
two of the following representations: graph, table, formula
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M1 - Math Addressed Typically in Eighth Grade

1. Problem is within one representation of one linear (but not piecewise linear) function
 A. Categorize the function as:
      i. Linear vs. nonlinear
      ii. Proportional vs. nonproportional
 B. Use a linear representation to find an input or output value within:
      i. Symbolic expression. Given an input, find the output (or given an output, find the input).
      ii. Table. Given at least two ordered pairs, complete the table.
      iii. Graph. Given an x, find corresponding y (or given a y, find corresponding x).
      iv. Narrative description. Given a verbal description of an input, find an output.

2.  Problem requires translation of one linear (but not piecewise linear) function from one representation 
to another (use and/or interpret m and b as key characteristics or use a few points)

 A. Graph ↔       Table
 B. Graph ↔       Symbolic
 C. Graph ↔       Narrative
 D. Table ↔       Symbolic
 E. Table ↔       Narrative
 F. Symbolic ↔       Narrative

M2 - Beyond Math Addressed Typically in Eighth Grade

3.  Problem requires interpretation of two or more functions that represent change over time, including 
linear functions or segments of piecewise linear functions

 A. Compare:
      i. Different segments in a piecewise function
           a) Duration of different segments
           b) Distance traveled represented by different segments

c) Direction of change (e.g., forward/backward, increasing/decreasing) of different 
segments

           d) Rate of change (e.g., faster/slower) of different segments
      ii) Two or more different linear functions
           a) Time at which two different functions reach a given position
           b) Given a time, the corresponding position in two linear functions
           c) Duration of different functions
           d) Distance traveled represented by two different functions

e) Direction of change (e.g., forward/backward, increasing/decreasing) of two different 
functions

           f) Rate of change (e.g., faster/slower) of two different functions
 B. Find the average rate over a single multirate piecewise linear function

Table A2. Eighth-Grade Core Mathematical Constructs. Linear Function as Preparation for Algebra  
and Calculus.
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Appendix B

TEKS Knowledge and Skills Covered by the SimCalc Student Assessments

Table B1. Seventh-Grade TEKS Knowledge & Skills.

TEKS Standard (K&S) Standard Component

(Introduction a) Students use algebraic thinking to describe how a change in one quantity in a 
relationship results in a change in the other, and they connect verbal, numeric, graphic, and symbolic 
representations of relationships.

(2)  Number, operation, and quantitative 
reasoning. The student adds, subtracts, 
multiplies, or divides to solve problems and justify 
solutions.

The student is expected to:

(2D)  use division to find unit rates and ratios in 
proportional relationships such as speed, density, 
price, recipes, and student-teacher ratio

(2F)  select and use appropriate operations to 
solve problems and justify the selections

(3)  Patterns, relationships, and algebraic 
thinking. The student solves problems involving 
proportional relationships.

The student is expected to:

(3B)  estimate and find solutions to application 
problems involving proportional relationships 
such as similarity, scaling, unit costs, and related 
measurement units

(4)  Patterns, relationships, and algebraic 
thinking. The student represents a relationship in 
numerical, geometric, verbal, and symbolic form.

The student is expected to:

(4A)  generate formulas involving conversions, 
perimeter, area, circumference, volume, and 
scaling

(4B)  graph data to demonstrate relationships in 
familiar concepts such as conversions, perimeter, 
area, circumference, volume, and scaling

(7) Geometry and spatial reasoning. The 
student uses coordinate geometry to describe 
location on a plane.

The student is expected to:

(7A)  locate and name points on a coordinate 
plane using ordered pairs of integers

(14)  Underlying processes and mathematical 
tools. The student communicates about Grade 7 
mathematics through informal and mathematical 
language, representations, and models.

The student is expected to:

(14A)  communicate mathematical ideas using 
language, efficient tools, appropriate units, and 
graphical, numerical, physical, or algebraic 
mathematical models
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Table B2. Eighth-Grade TEKS Knowledge & Skills.

TEKS Standard (K&S) Standard Component

(8.3)  Patterns, relationships, and algebraic 
thinking. The student identifies proportional 
relationships in problem situations and solves 
problems.

The student is expected to:

(A)  compare and contrast proportional and non-
proportional linear relationships; and

(B)  estimate and find solutions to application 
problems involving proportional relationships 
such as similarity and rates.

(8.4)  Patterns, relationships, and algebraic 
thinking. The student makes connections 
among various representations of a numerical 
relationship.

The student is expected to generate a 
different representation of data given another 
representation of data (such as a table, graph, 
equation, or verbal description).

(8.5)  Patterns, relationships, and algebraic 
thinking. The student uses graphs, tables, and 
algebraic representations to make predictions 
and solve problems.

The student is expected to:

(A)  predict, find, and justify solutions to 
application problems using appropriate tables, 
graphs, and algebraic equations

(8.15)  Underlying processes and 
mathematical tools. The student communicates 
about Grade 8 mathematics through informal and 
mathematical language, representations, and 
models.

The student is expected to:

(B)  evaluate the effectiveness of different 
representations to communicate ideas.

(8.16)  Underlying processes and 
mathematical tools. The student uses logical 
reasoning to make conjectures and verify 
conclusions.

The student is expected to:

(A)  make conjectures from patterns or sets of 
examples and nonexamples; and

(B)  validate his/her conclusions using 
mathematical properties and relationships.
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Appendix C

Sample Items

Figure C1. Seventh-grade student M1 item.

Figure C2. Seventh-grade student M2 item.
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Figure C3. Seventh-grade teacher MKT Item (generating, choosing, and evaluating problems and examples 
that can illustrate key curricular ideas).

Figure C4. Eighth-grade student M1 item.
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Figure C5. Eighth-grade student M2 item.

Figure C6. Eighth-grade teacher MKT item (Interpreting unconventional forms or representations that students 
are likely to make).
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Appendix D 

Sample Characteristics for Item Data

Table D1. Student Characteristics.

Variable

Seventh Grade Year 1 Eighth Grade

Control Treatment Control Treatment

Total count of students 825 796 303 522

Female (%) 50.6 48.9 45.1 47.9

Individual ethnicity (%)

White 38.7 48.5 65.6 50.0

Hispanic 54.1 44.3 22.7 40.7

Asian 2.0 1.5 1.1 1.3

African American 4.7 4.2 9.5 6.9

Table D2. Teacher Characteristics.
 

Variable

Seventh Grade Year 1 Eighth Grade

Control Treatment Control Treatment

Total count 47 48 23 33

Female (%) 81 77 82.6 84.8

Years teaching total

Mean 10.5 12.4 9.6 7.9

Range 1–29 1–40 0–27 0–31

Years teaching mathematics

Mean 9.5 11.0 9.9 8.2

Range 1–29 1–40 0–27 1–32

Teacher ethnicity (%)

White 70.2 77.1 87.0 78.8

Hispanic 25.5 20.8 8.7 15.1

Asian 4.3 0 0 0

African American 0 2.1 4.3 6.0

Master’s degree (%) 17.0 18.8 26.1 6.0
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Appendix E

Item Characteristics of the Seventh-Grade Student Assessment

Table E1. Items ordered by difficulty using pretest percent correct (N = 1621, Seventh Grade Year 1). Sample  
characteristics are reported in Appendix D.

Item Description by Subscale

p
Pretest

All
Posttest

Treatment
Posttest
Control

M1

9a Basic table reading .857 .896 .887
2 Unit rate problem with d = rt .754 .810 .821
6 Basic table reading .718 .832 .778
4 Unit rate problem with y = kx .695 .742 .707
1 Basic graph reading locating a point .694 .721 .792

7a Basic graph reading of linear relationships .675 .936 .770
3 Use the formulat a/b = c/d .622 .672 .652
5 Unit rate problem with d = rt .564 .667 .581

7b Basic graph reading determining the meaning of a point .456 .683 .588

M2

9c Translate a table to a graph .816 .922 .891
7e Interpret a graph of a proportional function .722 .830 .764
7c Basic graph reading determining the meaning of a point .684 .843 .738
7d Interpret a graph of a proportional function .637 .779 .707
9b Translate a table to an equation .540 .692 .645

12c Interpret direction in two piecewise position graphs .526 .680 .572
8c Construct a position graph .469 .813 .537
13 Interpret speeds in a piecewise position graph .357 .720 .464

14a Interpret speed and direction in a piecewise position graph .301 .693 .402
14b Interpret speed and direction in a piecewise position graph .252 .661 .338
12b Interpret direction in two piecewise position graphs .247 .422 .285
12a Interpret speed in two piecewise position graphs .234 .549 .385
14c Interpret speed and direction in a piecewise position graph .197 .616 .286
8a Determine speed from a position graph .177 .504 .239

10a Construct values in a table .179 .362 .244
11 Translate an equation to a graph .163 .430 .207

14d Interpret speed and direction in a piecewise position graph .135 .648 .208
10c Construct graph from table .133 .270 .167
10b Construct equation from table .108 .241 .175
8b Determine slope from a position graph .039 .275 .087
15 Construct narrative about two piecewise position graphs .028 .138 .052
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Appendix F

Item Characteristics of the Eighth-Grade Student Assessment

Table F1. Items ordered by difficulty using pretest percentage correct (N = 825). Sample characteristics are 
reported in Appendix D.

Item Description by Subscale

p
Pretest

All
Posttest

Treatment
Posttest
Control

M1

8a On a graph, given an x, find the corresponding y .834 .866 .911
1 Find an output for an input to a linear equation .765 .818 .848
4 Translate a table to a graph .678 .757 .766

8b Find speed in position graph (b = 0) .618 .797 .667
2 Translate a narrative to an equation .584 .611 .587

10a Translate a graph to a table (motion) .564 .672 .634
3 Translate a table to a symbolic expression .545 .653 .653

13 Construct a graph from a narrative (motion) .392 .563 .492
15a Construct a position graph from a narrative .384 .682 .528
11b Given a table, find the rate (money) .362 .444 .432
8c Find speed in position graph (b > 0) .342 .454 .432

11a Given several ordered pairs, complete the table (money) .274 .437 .360
6 Identify a narrative describing a proportional relationship .258 .481 .373
7 Categorize a function as linear vs. nonlinear .247 .351 .330

11d Translate a graph to an equation (money) .170 .278 .244
10b Translate a graph to an equation (motion) .119 .285 .271
11c Translate a table to a graph (money) .093 .159 .168

5 Identify a graph of a proportional function .052 .222 .165
M2

8d In position graphs, compare durations of two functions .656 .716 .663
14a Find distance traveled in one segment of a position graph .507 .613 .597

9 Construct a position graph representing a faster speed than 
another one .484 .753 .528

16b Construct two comparative functions on a position graph .297 .661 .436
16a Construct two comparative functions on a position graph .293 .579 .370
14c Describe motion in one segment of a position graph (slope = 0) .287 .625 .436
15b Construct a two-segment position graph from a narrative .270 .644 .446
14b Find speed in one segment of a position graph .267 .404 .363
16d Construct two comparative functions on a position graph .259 .502 .347
14e Compare distance and time traveled of two position graphs .256 .437 .376

14d Describe motion in one segment of a position graph (negative 
slope) .251 .540 .363

15c Construct a two-segment position graph from a narrative .216 .571 .350
15d Construct a two-segment position graph from a narrative .195 .609 .304

17b Construct a position graph representing the average speed of a 
multirate graph .148 .452 .241

16c Construct two comparative functions on a position graph .145 .527 .241
17a Find average speed over a multirate piecewise position graph .142 .393 .162
12b Compare rates in a piecewise graph (money) .079 .188 .145
12a Compare rates in a piecewise graph (money) .068 .188 .125
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Appendix G

Item Characteristics of the Seventh-Grade MKT Assessment

Table G1. Items ordered by difficulty using percentage correct on the pretest (N = 117). Sample  
characteristics are reported in Appendix D.

Item Description by Subscale p
Standard

Error
Rate and proportionality – M1

Story problems to model a proportional function .368 0.04
Narrative description of a proportional function .282 0.04
Why cross-multiplication works .120 0.03

Rate and proportionality – M2

Compare proportional functions across representations .709 0.04
Narrative description of a piecewise linear graph of pay rates .675 0.04
Evaluate student graphical representation of comparative functions .675 0.04
Understanding slope when time is on the y-axis .658 0.04
Representing multiplicative reciprocals .624 0.04
Evaluate graph conjecture, The shorter the line, the faster the run. .624 0.04
Mathematically precise language for slope of 0 .624 0.04
Evaluating an unconventional algebraic representation of slope .590 0.05
Tabular representation of a proportional function .538 0.05
Story for a piecewise linear graph of changing speeds .530 0.05
Multiple representations of changing speeds .530 0.05
Distinguishing multiplicative from additive reasoning .504 0.05
In d = rt, the relationship between speed and time .359 0.04
Connecting aspects of a table, graph, and formula of the same function .188 0.04
Algebraic representation of a proportional function .154 0.03

Velocity

Given a velocity graph, choose the position graph .282 0.04
Narrate motion represented in position and velocity graphs .256 0.04
Given a velocity graph, draw the position graph .197 0.04
Given a complex velocity graph, choose the position graph .188 0.04
Given a complex position graph, draw the position graph .120 0.03
Given a position graph, draw the velocity graph .077 0.02
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Appendix H

Item Characteristics of the Eighth-Grade MKT Assessment

Table H1. Items ordered by difficulty using percentage correct on the pretest (N = 56). Sample characteristics 
are reported in Appendix D.

Item Description by Subscale p
Standard

Error
M1

Model motion on a graph given story .875 .04
Identifying linearity in a table .750 .06
Translating linear functions from one representation to another .679 .06
Distinguish proportional relationships from quadratic and exponential .518 .07
Proportional reasoning with proportional and linear functions .482 .07
Identify a graphical representation of a function family for y = kx .446 .07
Compare different representations of the same function .321 .06
Proportional reasoning about size and price of object .304 .06
Representing proportional, linear, and nonlinear functions .179 .05

M2

Distinguishing visual and mathematical properties of slope .875 .04
Calculate slope of a segment that does not go through the origin .857 .05
Given a story of motion, choose a piecewise position graph .821 .05
Evaluate student conjectures about average rate on a piecewise graph of motion .821 .05
Evaluate student misconceptions about modeling motion .714 .06
Understanding slope when time is on the y-axis .679 .06
Model motion that varies in rate and/or starting position with linear function .661 .06
Given a story of motion, choose a piecewise position graph .661 .06
Find average rate in a piecewise position graph .661 .06
Compare two linear functions representing motion (algebraic) .643 .06
Compare two graphical models of money accumulation .589 .07
Understanding rate when time is on the y-axis .554 .07
Given a story, choose a piecewise position graph (distracters are common 
misconceptions) .518 .07

Compare two linear functions representing motion (in a story) .464 .07
Compare two models of motion on a position graph .429 .07
Identify average rate in a piecewise algebraic function .411 .07
Describe connections between position and velocity graphs .375 .07
Identify average rate in a piecewise position graph .143 .05
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